Towards a global IP Anycast service

Hitesh Ballani, Paul Francis
Cornell University
ACM SIGCOMM 2005
What is IP Anycast?

One-to-Any communication with no changes to routing and clients

Robust and efficient service discovery

- Query-Reply Services: DNS Root-Servers etc.
- Routing Services: IPv6 transition (6to4) etc.
What is IP Anycast?

One-to-Any communication with no changes to routing and clients

Robust and efficient service discovery

- Query-Reply Services: DNS Root-Servers etc.
- Routing Services: IPv6 transition (6to4) etc.
What is IP Anycast?

One-to-Any communication with no changes to routing and clients

Robust and efficient service discovery

- Query-Reply Services: DNS Root-Servers etc.
- Routing Services: IPv6 transition (6to4) etc.
What is IP Anycast?

One-to-Any communication with no changes to routing and clients

Robust and efficient service discovery

- Query-Reply Services: DNS Root-Servers etc.
- Routing Services: IPv6 transition (6to4) etc.

But its use has been limited?
Limitations of Inter-domain IP Anycast

- Wastes address space
- Does not scale by number of groups
- Difficult to deploy
 - obtain an address prefix
 - a certain level of expertise
- Is limited by IP routing
 - inability to offer load-based selection
Proxy IP Anycast Service (PIAS)

What is PIAS?
A practical anycast deployment architecture
- addresses native IP Anycast limitations
- offers new features
 - opens new anycast usage avenues

Key Insight
PIAS: Basic Idea

Deploy Anycast Proxies

All proxies advertise the same prefix
PIAS: Basic Idea

Group Members register with proxies
PIAS: Basic Idea

Client (C) ⇒ Group 1 (blue group)
PIAS: Basic Idea

Native IP Anycast delivers packets to proxies
PIAS: Basic Idea

Proxies tunnel to appropriate member
PIAS: Basic Idea

Different client might go to a different member
PIAS: Basic Idea

Multiple groups can register

[Diagram showing IP Anycast, Anycast Proxy, Member (group 1), and Member (group 2)]
What does PIAS solve?

- Address Usage
- Effort Amortization
- Ease-of-Use
- Backwards Compatible
- Selection Criteria

Efficient use of address space

Thousands of groups per IP address in prefix
Group address - [IP-Address]:[Port]
What does PIAS solve?

- Address Usage
- Effort Amortization
- Ease-of-Use
- Backwards Compatible
- Selection Criteria

Amortization of effort

Deployment effort spread across thousands of groups
What does PIAS solve?

- Address Usage
- Effort Amortization
- Ease-of-Use
- Backwards Compatible
- Selection Criteria

Ease of join/leave

No interaction with routing
What does PIAS solve?

- Address Usage
- Effort Amortization
- Ease-of-Use
- Backwards Compatible
- Selection Criteria

No changes to clients
just as native IP Anycast
What does PIAS solve?

- Address Usage
- Effort Amortization
- Ease-of-Use
- Backwards Compatible
- Selection Criteria

Multiple selection criteria

for example, load balance, proximity
What does PIAS solve?

- Address Usage
- Effort Amortization
- Ease-of-Use
- Backwards Compatible
- Selection Criteria

Multiple selection criteria
for example, load balance, proximity

Group members can be clients for the group!
What does PIAS solve?

- Address Usage
- Effort Amortization
- Ease-of-Use
- Backwards Compatible
- Selection Criteria

All this just by proxying?

- decoupled issues from routing
- can be easily addressed in proxy infrastructure
PIAS: design challenges

- Scalability by
 - no. of groups, group size/dynamics
 - no. of proxies

- Robustness and fast-failover
Members register with *Join Proxies* (JP)

Registration involves member authentication
PIAS: design challenges

- Scalability by
 - no. of groups, group size/dynamics
 - no. of proxies
- Robustness and fast-failover

Rendezvous Proxies (RP)

group address mapped to RP using consistent hash
PIAS: design challenges

- Scalability by
 - no. of groups, group size/dynamics
 - no. of proxies
- Robustness and fast-failover

Hierarchy

RPs track JPs, JPs track members
PIAS: design challenges

- Scalability by
 - no. of groups, group size/dynamics
 - no. of proxies
- Robustness and fast-failover

Overlay and Routing issues
PIAS: design challenges

- Scalability by
 - no. of groups, group size/dynamics
 - no. of proxies
- Robustness and fast-failover

Proxy and Member failures
PIAS: putting it all together

Anycast: Client (C) to Group 1 (blue)
PIAS: putting it all together

C \Rightarrow Ingress Proxy

......\Rightarrow IP Anycast

Anycast Proxy

Member (group 1)
PIAS: putting it all together

Ingress Proxy ⇒ Join Proxy

Ingress

...⇒ IP Anycast → IP Unicast

Anycast Proxy

Member (group 1)
PIAS: putting it all together

Join Proxy ⇒ Member
PIAS: putting it all together

Client \(\Rightarrow\) Ingress P. \(\Rightarrow\) Join P. \(\Rightarrow\) Member

\[\begin{array}{c}
\text{Client} \\
\text{Ingress} \\
\text{Join P.} \\
\text{Member}
\end{array}\]

\[\begin{array}{c}
\text{JP} \\
\text{JP} \\
\text{JP (group 1)}
\end{array}\]

\[\begin{array}{c}
\text{Ingress} \\
\text{JP}
\end{array}\]

\[\begin{array}{c}
\text{IP Anycast} \\
\text{IP Unicast}
\end{array}\]

\[\begin{array}{c}
\text{Anycast Proxy} \\
\text{Member}
\end{array}\]
New anycast applications

Anycast service offered by PIAS

- practical
- easy-to-use
- scales by group number/size/dynamics
- group members can be clients too

Applications

- Peer discovery: network games, p2p applications etc.
- Reaching an overlay network: querying OpenDHT, global RON, i3 etc.
PIAS : possible problems

- Stretch
- Affinity
- Proximity
PIAS: possible problems

- Stretch
- Affinity
- Proximity

Stretch = PIAS path len. / Direct path len.

What is the stretch imposed by PIAS?
PIAS : possible problems

- Stretch : simulation
- Affinity
- Proximity

Topology

- POP-level topology for tier-1 ISPs (Rocketfuel)
 - 22 ISPs, 687 POPs, 2825 inter-POP links
 - Annotated links with actual distance (kms)

Simulation

- SSFNET for BGP route calculation
PIAS: possible problems

- Stretch: simulation
- Affinity
- Proximity
PIAS: possible problems

- Stretch: simulation
- Affinity
- Proximity

Median Stretch: 1.01
90th percentile: 2.2
PIAS: possible problems

- Stretch
- Affinity
- Proximity

Affinity: same client to same ingress
PIAS: possible problems

- Stretch
- Affinity
- Proximity

Affinity: same client to same ingress

What is the affinity offered by native IP Anycast?
PIAS: possible problems

- **Stretch**
- **Affinity**: measured anycasted DNS root-servers
- **Proximity**

<table>
<thead>
<tr>
<th>Traceroute-Servers</th>
<th>Planetlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 244 vantage points</td>
<td>- 163 Planetlab sites</td>
</tr>
<tr>
<td>- Duration: 7 days</td>
<td>- Duration: 3 months</td>
</tr>
<tr>
<td>- Europe-centric distribution</td>
<td>- (Dec’04-Mar’05)</td>
</tr>
<tr>
<td></td>
<td>- US-centric distribution</td>
</tr>
</tbody>
</table>
PIAS: possible problems

- Stretch
- Affinity: measured anycasted DNS root-servers
- Proximity

![Graph showing CDF of average time between flaps (DAYS) for j-root, f-root, i-root, and k-root, with Tracert-Server Probing x-axis ranging from 0.01 to 1.0 days and y-axis ranging from 0 to 0.45. Each line represents a different root-servers.](image-url)
PIAS: possible problems

- Stretch
- Affinity: measured anycasted DNS root-servers
- Proximity

CDF

Average time between flaps (DAYS)

Less than 1 flap per day for \(\sim 95\% \) of nodes
PIAS: possible problems

- Stretch
- Affinity: measured anycasted DNS root-servers
- Proximity

CDF of the average time between flaps (DAYS)

Less than 1 flap per day for ~95% of nodes
PIAS: possible problems

- Stretch
- Affinity
- Proximity

Is native IP anycast based proximity useful?
PIAS: possible problems

- Stretch
- Affinity
- Proximity: measuring proximity

Does IP Anycast offer latency-based proximity?

- measured the proximity offered by root-server anycast deployments
- from ~40000 clients
PIAS: possible problems

- Stretch
- Affinity
- Proximity: measuring proximity

Does IP Anycast offer latency-based proximity?

- measured the proximity offered by root-server anycast deployments
- from \(\sim 40000 \) clients

Results (details in technical report)

- No (for a naive deployment)
 - 5-6 times the ideal proximity was common
PIAS: possible problems

- Stretch
- Affinity
- Proximity: example of poor proximity
PIAS: possible problems

- Stretch
- Affinity
- Proximity: example of poor proximity
PIAS : possible problems

- Stretch
- Affinity
- Proximity : example of poor proximity
PIAS: possible problems

- Stretch
- Affinity
- Proximity: a simple alleviative

Planned deployment to attain proximity
Why bother?

Application-layer anycast is already out there
Why bother?

Application-layer anycast is already out there

Advantages of PIAS . . .

✓ use for low-level protocols
✓ proximity is a lot easier
 ✓ easier management
✓ faster failover
✓ no extra round-trip
 ✗ the overhead of proxy traversal
Summary

Proxy IP Anycast Service

- *practical* anycast deployment architecture
- addresses native IP and application-layer anycast limitations
- opens new usage avenues

Anycast for the network community

- currently deploying PIAS
- publicly usable in the near future

http://pias.gforge.cis.cornell.edu
PIAS : the real picture

Ingress

IP Anycast

JP

JP

RP

Member (group 1)

IP Unicast

Anycast Proxy
PIAS: the real picture

Ingress

IP Anycast

IP Unicast

Anycast Proxy

Member (group 1)
PIAS: the real picture

Ingress

JP

JP

RP

C

IP Anycast

IP Unicast

Anycast

Proxy

Member (group 1)
PIAS: engineering issues

Scalability by no. of proxies

- a clustered deployment model
- decouples proxy dynamics from inter-domain routing
PIAS: engineering issues

Failures

- no impact on inter-domain routing