Towards a global IP Anycast service

IP Anycast : Affinity and Proximity Measurements

Hitesh Ballani, Paul Francis

Cornell University

DNS-OARC Workshop

What is IP Anycast?

A paradigm for communicating with any member of a group

Robust and efficient service discovery

Query-Reply Services : DNS Root-Servers etc.

Routing Services: 6to4

What is IP Anycast?

A paradigm for communicating with any member of a group

Robust and efficient service discovery

Query-Reply Services : DNS Root-Servers etc.

► Routing Services : 6to4

What is IP Anycast?

A paradigm for communicating with any member of a group

Robust and efficient service discovery

Query-Reply Services : DNS Root-Servers etc.

► Routing Services : 6to4

But its use is limited?

Limitations of IP Anycast

Incredibly wasteful of address space

Scales poorly by the number of anycast groups

Difficult to deploy

- obtain an address prefix and an AS number
- ▶ a certain level of technical expertise

Subject to the limitations of IP routing

Limitations of IP Anycast

Incredibly wasteful of address space

Scales poorly by the number of anycast groups

Difficult to deploy

- obtain an address prefix and an AS number
- a certain level of technical expertise

Subject to the limitations of IP routing

Application-layer anycast

- DNS-based load balancing
- used in current applications of anycast

- Group members register with the proxies
- ▶ Native IP Anycast delivers packets to proxies
- Proxies forward them to appropriate member

- Group members register with the proxies
- ► Native IP Anycast delivers packets to proxies
- Proxies forward them to appropriate member

- Group members register with the proxies
- ▶ Native IP Anycast delivers packets to proxies
- Proxies forward them to appropriate member

- Group members register with the proxies
- ▶ Native IP Anycast delivers packets to proxies
- Proxies forward them to appropriate member

- ► Practical deployment model
- ► Efficient use of address space
- No changes to clients
- Smart selection by the proxies

- ► Practical deployment model
- ► Efficient use of address space
- ► No changes to clients
- Smart selection by the proxies

- Practical deployment model
- Efficient use of address space
- ► No changes to clients
- Smart selection by the proxies

- Practical deployment model
- Efficient use of address space
- No changes to clients
- Smart selection by the proxies

- Practical deployment model
- Efficient use of address space
- No changes to clients
- Smart selection by the proxies

Wouldn't it be nice if . . .

Native IP Anycast offered proximity!!

Wouldn't it be nice if ...

Wouldn't it be nice if . . .

Proximity

IP Anycast as a server-selection primitive

- Robustness
- Efficiency
 - Proximity for free!
 - Anycast packets delivered to nearest* server

Proximity

IP Anycast as a server-selection primitive

- Robustness
- Efficiency
 - Proximity for free!
 - Anycast packets delivered to nearest* server

Nearest

- Topologically (in terms of routing protocol metrics)
- Proximity in terms of other metrics?
 - Latency-based proximity

Proximity

IP Anycast as a server-selection primitive

- Robustness
- Efficiency
 - Proximity for free!
 - Anycast packets delivered to nearest* server

Nearest

- Topologically (in terms of routing protocol metrics)
- Proximity in terms of other metrics?
 - Latency-based proximity

How good is the latency-based proximity offered by current IP Anycast deployments?

Measuring Proximity: Methodology

Measuring Proximity: Methodology

Measuring Proximity: Methodology

Measuring Proximity : Methodology

Metric for quality of proximity
Ratio of anycast to minimum unicast latency

Measuring Proxmity : Methodology

King: Latency between any two Internet hosts

Measuring Proxmity: Methodology

King: Latency between any two Internet hosts

Measuring Proxmity : Methodology

King: Latency between any two Internet hosts

Measuring Proxmity: Methodology

King: Latency between any two Internet hosts

Measured anycast deployments : J-Root, AS112

▶ Measured latencies from 30000 clients

Measuring Proximity: Results

Anycast'ed AS appears similar to a multihomed AS

Anycast'ed AS appears similar to a multihomed AS

Anycast'ed AS appears similar to a multihomed AS

But is different from typical multihoming!

Our Conjecture

Anycasting of a prefix introduces

atypical connectivity in the AS-level Internet topology

Current Inter-domain routing

- supports anycast out-of-the-box
- but hurts the quality of anycast

Our Conjecture

Anycasting of a prefix introduces

atypical connectivity in the AS-level Internet topology

Current Inter-domain routing

- supports anycast out-of-the-box
- but hurts the quality of anycast

Alleviative

- Planned Deployment with proximity in mind
- Details in the technical report.

- Lost
- Duplicated
- ▶ Delivered to different anycast locations

- Lost
- Duplicated
- ▶ Delivered to different anycast locations

- Lost
- Duplicated
- ▶ Delivered to different anycast locations

- Lost
- Duplicated
- ▶ Delivered to different anycast locations

Anycast Flaps

Affinity

- Tendency of subsequent packets of a connection to be delivered to the same anycast location
- ▶ Anycast Flaps ⇒ Lack of Affinity
- What is the affinity offered by native IP Anycast?
 - How often do anycast destinations flap?

Why bother about affinity?

- ► IP Anycast affinity ⇒ PIAS affinity
- Anycast based connection-oriented services
- Better understand inter-domain routing
 - Does anycasting interact badly with existing Internet elements?

Anycast Flaps

Affinity

- Tendency of subsequent packets of a connection to be delivered to the same anycast location
- ▶ Anycast Flaps ⇒ Lack of Affinity
- What is the affinity offered by native IP Anycast?
 - How often do anycast destinations flap?

Why bother about affinity?

- ▶ IP Anycast affinity ⇒ PIAS affinity
- Anycast based connection-oriented services
- Better understand inter-domain routing
 - Does anycasting interact badly with existing Internet elements?

Measuring Affinity: Methodology

Affinity for exisiting anycast deployments

- Anycast Root-Servers (C,F,I,J,K,M)
- ► AS112 Servers (answer PTR queries for private addresses)

Which anycast location is a client accessing?

- Location querying supported by aforementioned destinations
- TXT-type DNS query
 eg. dig +norec @F.ROOT-SERVERS.NET HOSTNAME.BIND CHAOS
 TXT

Active probing to measure affinity

- ▶ Location-probe (UDP) every 10 seconds
- ▶ Flap: consecutive probes to different locations

Measuring Affinity: Data Collected

Planetlab [PL-set]

- ▶ 163 Planetlab sites
- Duration: 3 months (Dec'04-Mar'05)

Africa	0
Asia	22
Australia	3
S.America	1
Canada	12
Europe	31
US	94
Total	163

Measuring Affinity: Data Collected

Planetlab [PL-set]

- ▶ 163 Planetlab sites
- Duration: 3 months (Dec'04-Mar'05)

Traceroute-Servers [TS-set]

- ▶ 244 vantage points
- Traceroute'd to anycast destinations
- Load restrictions
 - Probe every 60 seconds
 - Duration : one week each

Africa	0
Asia	22
Australia	3
S.America	1
Canada	12
Europe	31
US	94
Total	163

Africa	3
Asia	26
Australia	12
S.America	8
Canada	1
Europe	152
US	42
Total	244

Metric of Affinity Average Inter-flap interval

Metric of Affinity

Average Inter-flap interval

Metric of Affinity Average Inter-flap interval

Metric of Affinity
Average Inter-flap interval

Metric of Affinity

Average Inter-flap interval

BGP-level analysis

- ▶ Data from Route-Views and RIPE RIS
- Low activity for anycast prefixes

BGP-level analysis

- Data from Route-Views and RIPE RIS
- Low activity for anycast prefixes

Our findings . . . summarized

- Measured anycast deployments offer good affinity
- Confirmed by BGP-level stability analysis
- Fast switching across providers

BGP-level analysis

- Data from Route-Views and RIPE RIS
- Low activity for anycast prefixes

Our findings . . . summarized

- Measured anycast deployments offer good affinity
- Confirmed by BGP-level stability analysis
- Fast switching across providers

Other affinity studies : Barber et. al., Boothe et. al. and Daniel Karrenberg

Reported lack of affinity in anycast

BGP-level analysis

- Data from Route-Views and RIPE RIS
- Low activity for anycast prefixes

Our findings . . . summarized

- Measured anycast deployments offer good affinity
- Confirmed by BGP-level stability analysis
- Fast switching across providers

Other affinity studies : Barber et. al., Boothe et. al. and Daniel Karrenberg

- Reported lack of affinity in anycast
 - Not sure why :(
 - Bias due to the vantage points chosen
 - Data may be the same ... interpretations differ

Thanks!

PIAS: pias.gforge.cis.cornell.edu e-mail: hitesh@cs.cornell.edu