Towards a deployable IP Anycast service

Hitesh Ballani, Paul Francis
Cornell University

{hitesh, francis}@cs.cornell.edu
What is IP Anycast?

- A paradigm for communicating with any member of a group

- Offers a powerful set of tools for service discovery, routing services …
 - Ease configuration
 - Improve robustness and efficiency

- Limited wide-area usage: DNS root-servers, .ORG TLD nameservers

- What limits the use of such a powerful and promising technique?
Limitations of IP Anycast

- Incredibly wasteful of addresses
 - need a block of 256 addresses even though just one is used

- Scales poorly by the number of anycast groups
 - each group requires an entry in the global routing system

- Difficult to deploy
 - obtain an address prefix and an AS number
 - requires a certain level of technical expertise

- Subject to the limitations of IP routing
 - no notion of load or other application layer metrics, convergence time

Application-layer anycast, typified by DNS-based load balancing, is what current applications such as content distribution make do with!

So, why bother?
IP Anycast has a lot to offer!

- Support for low level services
 - Eg. anycasting to reach a multicast tree or to a IPv6/v4 transition device

- Redresses many problems faced by P2P and overlay technologies
 - Bootstrapping support
 - Efficient querying of DHTs or services built on top of them
 - Efficient injection of packets into overlays

- Accessing web proxies without the need for a DNS query or HTTP redirect

- If a node could be a group member and a client
 - Nearby neighbor discovery for P2P Multicast, network games etc.
Proxy IP Anycast Service (PIAS)

- **KEY IDEA**: *Native* IP Anycast routing is not responsible for delivering anycast packets all the way to the anycast members
 - It delivers the packets to the Anycast Proxies (AP)
 - The proxies forward the packets to the appropriate member

Proxying allows us to offer high level features such as proximity and load balance.
What have we solved?

- Efficient address space usage
 - A /24 can potentially support 256 anycast groups
 - Actually, we can do much better
 - Identify anycast groups using transport addresses (<IP addr, port>)
 - Thousands of groups per IP address in the anycast block
 - Beneficial for scaling by the number of groups

- Pragmatic deployment model
 - Infrastructure operator obtains the address block/AS number
 - Deployment effort amortized across all supported groups
 - Group member perspective
 - Registration with a proxy to join an anycast group
 - Minimal changes at the server (group member)
 - No changes at the client
What have we solved? (Cont …)

- Scalability and addressing issues
 - Transferred them from routing to proxy infrastructure
 - Much easier to solve when isolated from IP routing!

- Solving these issues in the proxy infrastructure
 - We have designed the system to address them
 - For eg, scalability by the number of groups
 - every proxy node cannot keep state for every group
 - use consistent hashing to achieve this
 - Other issues
 - scalability by group size
 - scale to groups with high churn
 - efficiency of traversing the proxy infrastructure
 - Details in the paper
What about the connection affinity?

- What happens if *native* IP anycast is not sticky?
 - The pkts might be delivered to a different member

- What kind of affinity is offered by *native* IP anycast?
 - Measured the affinity offered by IP routing against anycasted DNS root-servers
 - Over 9 days, probed the 6 anycast groups from 40 sources at a probe/minute
 - Probability that a 2 minute connection breaks = 1 in 13000
 - Perceived notion of **lack of affinity** in IP anycast seems to be **overly pessimistic**

- Working on approaches that allow PIAS to:
 - bear some native IP anycast vagaries
 - provide E2E affinity
Implementation and deployment status

- The basic PIAS system has been implemented and tested in the laboratory
 - Comprises of 2 components
 - User space - overlay management tasks
 - Kernel space - tunneling packets between proxies and NAT’ting packets forwarded to the server

- The implementation served as a sanity check for our ideas

- Deployment efforts are underway
 - Acquired a /22 and an AS number from ARIN
 - Looking at various deployment possibilities
 - Hopefully, we will soon be able to answer some of the questions that I am going to raise next!
Research issues

- **Routing issues**
 - Minimize routing changes
 - The AS-path for the anycast prefix should be stable
 - Achieve fast fail–over
 - BGP is notorious for high convergence times, in rare cases ~15 minutes

- **Large scale anycast is not well studied!**
 - How good is the proximity offered by *native* IP anycast?
 - Is the anycast node reached by a client closest node in terms of latency?
Conclusion

- A ‘practical’ proposal for IP anycast deployment
 - Solves the major problems afflicting *native* IP anycast
 - Combines the advantages of application layer and native IP anycast

- Next frontier: system deployment
 - Will help us answer the research issues
 - Looking for volunteers who would be interested in supporting the deployment effort and who have ideas for applications which might benefit from such a primitive

Details: www.cs.cornell.edu/~hitesh/anycast.html
THANKS!
Backup slides!!!
A few details

- Scale by the number of groups
 - All proxies cannot keep state for all groups
 - Each group’s membership is tracked by a few designated proxies – **Rendezvous Anycast Proxy (RAP)** for the group

- Scale by group size and group churn
 - Add a tier to the membership management hierarchy
 - **Join Anycast Proxy** – the proxy contacted by the target when it joins the group
 - Feeds approximate number of targets associated with it to the group RAPs
A few details

INITIAL PACKET PATH – 4 SEGMENTS LONG

SUBSEQUENT PACKET PATH – 3 SEGMENTS LONG

Selection at the RAP and JAP allows us to offer high level features such as proximity and load balance.